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Abstract

An incremental integral isoconversional method for the determination of activation energy as a func-
tion of the extent of conversion is presented. The method is based on the treatment of experimental
data without their transformation so that the resulting values of activation parameters should not be
biased. The method was tested for recovering the activation energies from simulated data and em-
ployed for the treatment of experimental data of the NiS recrystallisation.
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Introduction

Integral isoconversional methods for the treatment of kinetic data are widely used in the
determination of activation energies. The basic idea of these methods is that the kinetics
of the process occurring in the system can be described by the general rate equation.

%‘jzkf(a) (1)

where 0 is the extent of conversion and f{0) is the conversion function reflecting the
mechanism of the process. The temperature dependence of the rate constant k is usu-
ally taken to follow an Arrhenius-type dependence:

_ E
k=Aexp E» T @ (2)

where 4 is the preexponential factor, £ is the activation energy, 7 is the absolute tem-
perature and R stands for the gas constant.

For the linear increase of temperature in DSC measurements, the furnace tem-
perature can be expressed as
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where T} is the furnace temperature, 7 is the starting temperature of the measurement
and [3 stands for the heating rate. If it is assumed that the temperature of the sample
equals that of the furnace (7=T}), combination of Eqs (1)—(3) gives:
da _4 E O,
A = ZLexpt - [/ (@) )
dr B 0O RT O
Since the reaction rate at the starting temperature is negligible, the starting tem-
perature can be set as 7=0 K. The variables can then be separated and Eq. (4) can be
integrated:

o T
J.dia :éJ'eXpEri Hir (5)
f(@) B{ O RTO

Integration of Eq. (4) makes the implicit assumption that the function f{a) holds
throughout the reaction process and is independent of temperature and heating rate.

Integration of the left side of Eq. (5) results in:

A E
F(a)-F(@0)== expBr—EdT (6)
B! 0 RT O
where F(Q) is the primitive function of 1/{a). Rearrangement of Eq. (6) yields:
A4 E
S S %
F()-F(0) O RT O

Equation (7) represents the general equation for the development of the conven-
tional integral isoconversional methods of kinetic analysis. Using the Doyle [1] and
Coats—Redfern [2] approximations for the temperature integral in Eq. (7), the
Flynn—Wall-Ozawa (FWO) [3, 4] and Kissinger—Akahira—Sunose (KAS) [5] meth-
ods, respectively, can be derived. Equation (7) is also the basis for the non-linear
isoconversional method [6].

The limitations of conventional integral isoconversional methods lie in the assump-
tion that a single set of activation parameters and a unique function of o describe the
whole conversion range of the process. This assumption results in averaged activation
energies from the kinetic analysis. This paper attempts to address this issue by the devel-
opment of an incremental integral isoconversional method of kinetic analysis that will
yield actual values of the activation energies at discreet extents of conversion.

Theoretical part

Assumption of a constant value of activation energy is implicit and inevitable for the
separation of the variables of Eq. (4) in the derivation of Eq. (5). On the other hand,
the application of isoconversional methods naturally leads to effective activation pa-
rameters dependent on the extent of conversion [7, 8]. One can easily see that, even
for the case of the simplest linear dependence of activation energy on d, the variables
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in Eq. (4) cannot be separated. Any dependence of the activation energy on the extent
of conversion invalidates Eq. (5) which means that all the subsequent formulas are
mathematically incorrect. Nonetheless, procedures for the treatment of experimental
data using integral isoconversional methods give values of activation energy. The
values determined are, obviously, averaged over the whole conversion range and un-
predictably distorted by the mathematical incorrectness of the procedure applied.

The mathematical incorrectness can be overcome, at least partly, by assuming
that the activation energy does not vary significantly within a short conversion inter-
val. Using this approximation, Eq. (4) leads to the result

= I b 37 (®)

F(O(z) —F@ )4

where 7T and T are the temperatures at which the extents of conversion o, and O are
reached. Equation (8) enables an averaged value of activation energy, in the conver-
sion increment 0 ;—0, from the treatment of a series of runs with linear heating rates,
to be obtained. For the sake of simplicity, Eq. (8) can be rewritten as:

B=4, fexpgr? EiT )

where the parameters A4 and By are functions of the extent of conversion and may be
defined as:
A
F(G2)—F(Gl) (10)
E
Ba =_
R
In this paper Eq. (9) was applied to a simulated data set with two sets of activation
parameters, and the experimental data acquired for the recrystallisation of nickel sul-
phide. The method developed was also compared to the conventional non-incremental
isoconversional method in the determination of the activation energy.

a=

Experimental

The material used was high purity nickel(Il) sulphide powder (99.95%, 100 um particle
size) supplied by Johnson Matthey GmbH. The sample of NiS was conditioned in the
sample holder of the DSC calorimeter by a procedure similar to that described in [9].

For the study of NiS recrystallisation, the differential scanning calorimeter
Perkin Elmer DSC-7 with the Pyris software was employed. The temperature scale
was calibrated using the standards In, Sn and Zn. The enthalpic scale was calibrated
to the enthalpy of In fusion. The sample of NiS was placed in a crimped standard alu-
minum pan. The purge gas was nitrogen.
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Results and discussion

For the determination of the parameters 44 and By in Eq. (8), a FORTRAN-77 pro-
gram was written. The parameters were obtained by minimizing the sum of squares
between experimental and theoretical values of isoconversional temperatures for var-
ious heating rates by the simplex method [10]. In order to avoid inaccuracies associ-
ated with analytical approximations of the temperature integral, the integration indi-
cated in Eq. (9) is carried out using the Simpson rule. The program was used for the
treatment of kinetic curves using the conditions described by both Eqs (7) and (8) as
Eq. (7) is only a special case of Eq. (8) where 7,=0.

The clearest test of a method for kinetic analysis is its ability to recover the activa-
tion parameters from a simulated data set for which the input parameters are known ex-
actly. The conversion-temperature data of a hypothetical first-order reaction with two ac-
tivation energies and two preexponential factors were, therefore, initially treated using
the dependence of the activation energy and preexponential factor on o given by:

E=E,(1-0) +E 0

(11
A=A 42

The values of activation energies were taken to be E,=80 kJ mol' and
E,=120 kJ mol™, the values of preexponential factors were 4,=10° min™' and
A>=10" min™". The conversion-temperature curves for individual heating rates were
obtained by integrating Eq. (4) using the fourth-order Runge—Kutta method, where
flo)=1-a. The recovery of activation energy from the simulated kinetic curves is il-
lustrated in Fig. 1. It can be seen that the conventional non-incremental integral iso-
conversional method, represented by Eq. (7), gives the dependence much different
from that defined by the conditions of Eq. (11). For the method represented by
Eq. (8), the width of the conversion increment was chosen as 0,—0(;=0.1. Figure 1
shows that the calculated dependence is much more similar to the input data. In this
case, the extent of conversion is taken as the higher limit, o,. If the extent of conver-
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Fig. 1 Dependence of the activation energy on the extent of conversion for the simulated data
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sion is taken as the arithmetic mean of 0; and 0, the recovered dependence is identi-
cal to the input data.

The method was also applied to experimental data measured for the recrystallisation
of NiS. NiS behaves quite strangely and the number of recrystallisation peaks depends
also on the heating rate [11]. In the range of heating rates 2.5-15 K min ', the curves
show one recrystallisation peak. The kinetic curves for the recrystallisation step are
shown in Fig. 2. The curves were treated by both the integral isoconversional methods
represented by Eqs (7) and (8). In the case of Eq. (8), the width of the conversion incre-
ment was again chosen to be a,—0;=0.1. As it can be seen in Fig. 3, the dependence of the
activation energy on O resulting from the method of Eq. (8), exhibits a maximum at about
0=0.4. At about 0=0.8 a steep decrease in activation energy is observed. The conven-
tional non-incremental integral isoconversional method (Eq. (7)) gives a flattened de-
pendence with a maximum at 0=0.7. The relatively smooth shift in the calculated activa-
tion energy is consistent with the averaging of processes as the extent of conversion is in-
creased. The activation energy calculated using Eq. (8), showed a much stronger depend-
ence of the activation energy on the extent of conversion. The sharp decline in the activa-
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Fig. 2 Experimental kinetic curves of the recrystallisation of NiS. The numbers at the
curves indicate the heating rates
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Fig. 3 Dependence of the activation energy on the extent of conversion for the
recrystallisation of NiS
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tion energy above 0=0.8 is averaged out in the non-incremental method of Eq. (7). Given
that Eq. (8) produced a more accurate description of the simulated data, it is likely that the
values of the activation energy determined for the recrystallisation data are more robust
than those using the averaging method of Eq. (7). Equation (7) represents a similar proce-
dure than described earlier for the integral isoconversional method applied to the study of
processes exhibiting the induction period [9, 12—-14].

As has been mentioned above, from Eq. (7) other methods (KAS, FWO, non-
linear, etc.) can be derived. Since these methods are based on the mathematical treat-
ment of the same idea, the resulting activation energies should be of the same quality;
for simulated kinetic curves free of random errors, they should even provide identical
results. However, it is generally known that the application of a variety of methods to
the analysis of a single set of experimental data provides different dependences of ac-
tivation energy, as it has been very clearly demonstrated in [15]. Apart from the inac-
curacies associated with analytical approximations of the temperature integral, to our
meaning, this could be elucidated by the use of different objective functions in the
treatment of experimental data. The method represented by Eq. (7) does not use any
transformation of the experimental data nor the mathematical simplification. The ac-
tivation parameters are determined directly from the comparison of experimental and
calculated values of isoconversional temperatures for a set of heating rates by the
non-linear least squares method. The activation parameters are determined from the
quantities measured directly by thermoanalytical techniques, such as temperature,
time, heating rate, reaction rate (DSC) or extent of conversion (TG). The other meth-
ods use transformations such as InB=A1/T), In(B/T*)=A(1/T), or find a minimum of the
function specifically constructed for eliminating the preexponential factor. Any
transformation of experimental data leads to the deformation of the distribution of er-
rors and a shift in the position of minima of the sum of squares between the experi-
mental and calculated values [16]. Thus, the methods using the objective functions
with transformed experimental data have to lead to biased values of activation param-
eters comparing to the values using directly the experimental data.

We are not the first ones introducing the idea of incremental isoconversional
method. An incremental integral isoconversional method to account for variation in
the activation energy has been recently published by Vyazovkin [7]. He obtains the
activation energy by the minimization of the function ®, which is in fact the sum of
ratios of temperature integrals. The main differences between the method presented
here and that published in [7] is that we use directly Eq. (9) without any transforma-
tion of experimental data and that we use the least-square method for obtaining the
values of activation parameters. The minimization of the function ® used in [7] corre-
sponds to a different objective function in the treatment of experimental data than
employed in this paper. Thus, the method [7] supposedly should give the values of ac-
tivation energy different from ours.

The methods based on Eq. (8) assume that the function f{a) holds within the
conversion increment <0 ;;0,>. This is much less severe restriction that introduced in
derivation of Eq. (7) where it is assumed that the function f{a) holds in the whole con-
version interval. For an infinitely short interval o, and ,, Eq. (8) degenerates back to
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Eq. (4). Equation (4) should provide true values of activation energies, not averaged
over a temperature interval. However, the differential isoconversional methods repre-
sented by Eq. (4) are very sensitive to noise and tend to be unstable [5, 7] and also
may yield the effective activation energy which deviates largely from that of the indi-
vidual reactions [17]. The method represented by Eq. (8) is a reasonable compromise
between the stability of calculations and obtaining good values of activation energies,
particularly if the arithmetic mean of the conversion interval is taken as the value at
the conversion axis (Fig. 1). Optimization of the width of the conversion interval used
in the determination of the activation energy has not been attempted here, but is im-
portant and will have to be tested in future. It should also be tested how the method
indicates a sudden jump in activation energy.

The parameters 44 and By, occurring in Eq. (9), can be used either for subse-
quent theoretical considerations or for modeling the kinetics of the process under
study. As for the modeling, for a sufficiently short conversion increment, the parame-
ter Ay is approximately equal to the product Af{0). From the combinations of Eqs (1)
and (2) it then follows:

t
— BG
a—_!AaexpE»Tglt (12)

In order to integrate Eq. (12), both parameters 44 and E, are needed. Tempera-
ture can be an arbitrary function of time. It is a matter of course that the reliability of
the results of modeling depends on the reliability of the parameters A4 and By. As it is
stated above, the incremental integral isoconversional method proposed here should
provide reliable parameters. The reliable parameters free of systematic errors are par-
ticularly important when extrapolation of the results outside the measured tempera-
ture range is carried out.

A DOS version of the program KINPAR for the calculation of the parameters Ay
and By in Eq. (8) is available on request.

Conclusions

This paper has presented an incremental integral isoconversional method for the de-
termination of the activation energy as a function of the extent of conversion. The
method is based on the treatment of experimental data without their transformation so
that the resulting values of activation parameters should not be biased. As the method
calculates the activation energy from the incremental differences in the extent of con-
version, the resulting values of the activation energy are more representative for the
processes that are occurring in the system under study.
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